If $\left| {\begin{array}{*{20}{c}}
{a - b - c}&{2a}&{2a}\\
{2b}&{b - c - a}&{2b}\\
{2c}&{2c}&{c - a - b}
\end{array}} \right|$ $ = \left( {a + b + c} \right)\,{\left( {x + a + b + c} \right)^2}$ , $x \ne 0$ and $a + b + c \ne 0$, then $x$ is equal to
$abc$
$ - 2 \left( {a + b + c} \right)$
$ 2 \left( {a + b + c} \right)$
$ - \left( {a + b + c} \right)$
The greatest value of $c \in R$ for which the system of linear equations
$x - cy - cz = 0 \,\,;\,\, cx - y + cz = 0 \,\,;\,\, cx + cy - z = 0 $ has a non -trivial solution, is
The number of solution of the following equations ${x_2} - {x_3} = 1,\,\, - {x_1} + 2{x_3} = - 2,$ ${x_1} - 2{x_2} = 3$ is
The solutions of the equation $\left| {\,\begin{array}{*{20}{c}}x&2&{ - 1}\\2&5&x\\{ - 1}&2&x\end{array}\,} \right| = 0$ are
If $px^4 + qx^3 + rx^2 + sx + t$ $\equiv$ $\left| {\begin{array}{*{20}{c}}{{x^2}\, + \,\,3x}&{x\, - \,1}&{x\, + \,3}\\{x\, + \,1}&{2\, - \,x}&{x\, - \,3}\\{x\, - \,3}&{x\, + \,4}&{3x}\end{array}} \right|$ then $t =$
$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $